Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 373(6562): eabg7484, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34554812

RESUMEN

Our study suggests that the global CO2 fertilization effect (CFE) on vegetation photosynthesis has declined during the past four decades. The Comments suggest that the temporal inconsistency in AVHRR data and the attribution method undermine the results' robustness. Here, we provide additional evidence that these arguments did not affect our finding and that the global decline in CFE is robust.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Fertilización
2.
Global Biogeochem Cycles ; 34(12): e2020GB006613, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33380772

RESUMEN

Variability in climate exerts a strong influence on vegetation productivity (gross primary productivity; GPP), and therefore has a large impact on the land carbon sink. However, no direct observations of global GPP exist, and estimates rely on models that are constrained by observations at various spatial and temporal scales. Here, we assess the consistency in GPP from global products which extend for more than three decades; two observation-based approaches, the upscaling of FLUXNET site observations (FLUXCOM) and a remote sensing derived light use efficiency model (RS-LUE), and from a suite of terrestrial biosphere models (TRENDYv6). At local scales, we find high correlations in annual GPP among the products, with exceptions in tropical and high northern latitudes. On longer time scales, the products agree on the direction of trends over 58% of the land, with large increases across northern latitudes driven by warming trends. Further, tropical regions exhibit the largest interannual variability in GPP, with both rainforests and savannas contributing substantially. Variability in savanna GPP is likely predominantly driven by water availability, although temperature could play a role via soil moisture-atmosphere feedbacks. There is, however, no consensus on the magnitude and driver of variability of tropical forests, which suggest uncertainties in process representations and underlying observations remain. These results emphasize the need for more direct long-term observations of GPP along with an extension of in situ networks in underrepresented regions (e.g., tropical forests). Such capabilities would support efforts to better validate relevant processes in models, to more accurately estimate GPP.

3.
Science ; 370(6522): 1295-1300, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303610

RESUMEN

The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2) [i.e., the CO2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined across most terrestrial regions of the globe from 1982 to 2015, correlating well with changing nutrient concentrations and availability of soil water. Current carbon cycle models also demonstrate a declining CFE trend, albeit one substantially weaker than that from the global observations. This declining trend in the forcing of terrestrial carbon sinks by increasing amounts of atmospheric CO2 implies a weakening negative feedback on the climatic system and increased societal dependence on future strategies to mitigate climate warming.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/metabolismo , Calentamiento Global , Fotosíntesis , Atmósfera/química , Dióxido de Carbono/análisis
4.
Glob Chang Biol ; 26(7): 3997-4012, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32427397

RESUMEN

Gaps in our current understanding and quantification of biomass carbon stocks, particularly in tropics, lead to large uncertainty in future projections of the terrestrial carbon balance. We use the recently published GlobBiomass data set of forest above-ground biomass (AGB) density for the year 2010, obtained from multiple remote sensing and in situ observations at 100 m spatial resolution to evaluate AGB estimated by nine dynamic global vegetation models (DGVMs). The global total forest AGB of the nine DGVMs is 365 ± 66 Pg C, the spread corresponding to the standard deviation between models, compared to 275 Pg C with an uncertainty of ~13.5% from GlobBiomass. Model-data discrepancy in total forest AGB can be attributed to their discrepancies in the AGB density and/or forest area. While DGVMs represent the global spatial gradients of AGB density reasonably well, they only have modest ability to reproduce the regional spatial gradients of AGB density at scales below 1000 km. The 95th percentile of AGB density (AGB95 ) in tropics can be considered as the potential maximum of AGB density which can be reached for a given annual precipitation. GlobBiomass data show local deficits of AGB density compared to the AGB95 , particularly in transitional and/or wet regions in tropics. We hypothesize that local human disturbances cause more AGB density deficits from GlobBiomass than from DGVMs, which rarely represent human disturbances. We then analyse empirical relationships between AGB density deficits and forest cover changes, population density, burned areas and livestock density. Regression analysis indicated that more than 40% of the spatial variance of AGB density deficits in South America and Africa can be explained; in Southeast Asia, these factors explain only ~25%. This result suggests TRENDY v6 DGVMs tend to underestimate biomass loss from diverse and widespread anthropogenic disturbances, and as a result overestimate turnover time in AGB.


Asunto(s)
Bosques , Árboles , África , Biomasa , Humanos , América del Sur
5.
New Phytol ; 225(1): 26-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494935

RESUMEN

Drought has promoted large-scale, insect-induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on-going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: (1) there is a trade-off in tree carbon investment between primary and secondary metabolites (e.g. growth vs defence); (2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and (3) implementing conifer-bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large-scale vegetation models, the under-representation of insect-induced tree mortality.


Asunto(s)
Carbono/metabolismo , Escarabajos/fisiología , Enfermedades de las Plantas/parasitología , Árboles/fisiología , Animales , Cambio Climático , Simulación por Computador , Sequías , Ecosistema , Bosques , Modelos Teóricos , Corteza de la Planta/inmunología , Corteza de la Planta/parasitología , Corteza de la Planta/fisiología , Árboles/inmunología , Árboles/parasitología
6.
Glob Chang Biol ; 26(3): 1068-1084, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31828914

RESUMEN

Robust estimates of CO2 budget, CO2 exchanged between the atmosphere and terrestrial biosphere, are necessary to better understand the role of the terrestrial biosphere in mitigating anthropogenic CO2 emissions. Over the past decade, this field of research has advanced through understanding of the differences and similarities of two fundamentally different approaches: "top-down" atmospheric inversions and "bottom-up" biosphere models. Since the first studies were undertaken, these approaches have shown an increasing level of agreement, but disagreements in some regions still persist, in part because they do not estimate the same quantity of atmosphere-biosphere CO2 exchange. Here, we conducted a thorough comparison of CO2 budgets at multiple scales and from multiple methods to assess the current state of the science in estimating CO2 budgets. Our set of atmospheric inversions and biosphere models, which were adjusted for a consistent flux definition, showed a high level of agreement for global and hemispheric CO2 budgets in the 2000s. Regionally, improved agreement in CO2 budgets was notable for North America and Southeast Asia. However, large gaps between the two methods remained in East Asia and South America. In other regions, Europe, boreal Asia, Africa, South Asia, and Oceania, it was difficult to determine whether those regions act as a net sink or source because of the large spread in estimates from atmospheric inversions. These results highlight two research directions to improve the robustness of CO2 budgets: (a) to increase representation of processes in biosphere models that could contribute to fill the budget gaps, such as forest regrowth and forest degradation; and (b) to reduce sink-source compensation between regions (dipoles) in atmospheric inversion so that their estimates become more comparable. Advancements on both research areas will increase the level of agreement between the top-down and bottom-up approaches and yield more robust knowledge of regional CO2 budgets.


Asunto(s)
Dióxido de Carbono , Ecosistema , África , Asia , Europa (Continente) , América del Norte , América del Sur
7.
Nat Geosci ; 12(9): 730-735, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31478009

RESUMEN

Forest disturbances leading to replacement of whole tree stands are a cornerstone of forest dynamics, with drivers including fire, wind-throw, biotic outbreaks and harvest. The frequency of disturbances may change over the next century, impacting the age, composition and biomass of forests. However, the variation in disturbance return time, i.e. the mean interval between disturbance events, across the world's forested biomes remains poorly characterised, hindering quantification of their role in the global carbon cycle. Here we present the global distribution of stand-replacing disturbance return time inferred from satellite-based observations of forest loss. Prescribing this distribution within a vegetation model with a detailed representation of stand structure, we quantify the importance of stand-replacing disturbances for biomass carbon turnover globally over 2001-2014. Return time varied from less than 50 years in heavily-managed temperate ecosystems to over 1000 years in tropical evergreen forests. Stand-replacing disturbances accounted for 12.3% (95% confidence interval, 11.4-13.7%) of annual biomass carbon turnover due to tree mortality globally, and in 44% of forested area biomass stocks are strongly sensitive to changes in disturbance return time. Relatively small shifts in disturbance regimes in these areas would substantially influence the forest carbon sink, that currently limits climate change by offsetting emissions.

8.
Nature ; 562(7725): 110-114, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283105

RESUMEN

Climate change is shifting the phenological cycles of plants1, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system2. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season3,4 and increased ecosystem productivity early in the season5. In situ6 and regional7-9 studies also provide evidence for lagged effects of spring warmth on plant productivity during the subsequent summer and autumn. However, our current understanding of these lagged effects, including their direction (beneficial or adverse) and geographic distribution, is still very limited. Here we analyse satellite, field-based and modelled data for the period 1982-2011 and show that there are widespread and contrasting lagged productivity responses to spring warmth across northern ecosystems. On the basis of the observational data, we find that roughly 15 per cent of the total study area of about 41 million square kilometres exhibits adverse lagged effects and that roughly 5 per cent of the total study area exhibits beneficial lagged effects. By contrast, current-generation terrestrial carbon-cycle models predict much lower areal fractions of adverse lagged effects (ranging from 1 to 14 per cent) and much higher areal fractions of beneficial lagged effects (ranging from 9 to 54 per cent). We find that elevation and seasonal precipitation patterns largely dictate the geographic pattern and direction of the lagged effects. Inadequate consideration in current models of the effects of the seasonal build-up of water stress on seasonal vegetation growth may therefore be able to explain the differences that we found between our observation-constrained estimates and the model-constrained estimates of lagged effects associated with spring warming. Overall, our results suggest that for many northern ecosystems the benefits of warmer springs on growing-season ecosystem productivity are effectively compensated for by the accumulation of seasonal water deficits, despite the fact that northern ecosystems are thought to be largely temperature- and radiation-limited10.


Asunto(s)
Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas , Estaciones del Año , Temperatura , Simulación por Computador , Mapeo Geográfico , Transpiración de Plantas , Plantas
9.
J Adv Model Earth Syst ; 10(5): 1102-1126, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30034575

RESUMEN

Land Surface Models (LSMs) are essential to reproduce biophysical processes modulated by vegetation and to predict the future evolution of the land-climate system. To assess the performance of an ensemble of LSMs (JSBACH, JULES, ORCHIDEE, CLM, and LPJ-GUESS) a consistent set of land surface energy fluxes and leaf area index (LAI) has been generated. Relationships of interannual variations of modeled surface fluxes and LAI changes have been analyzed at global scale across climatological gradients and compared with those obtained from satellite-based products. Model-specific strengths and deficiencies were diagnosed for tree and grass biomes. Results show that the responses of grasses are generally well represented in models with respect to the observed interplay between turbulent fluxes and LAI, increasing the confidence on how the LAI-dependent partition of net radiation into latent and sensible heat are simulated. On the contrary, modeled forest responses are characterized by systematic bias in the relation between the year-to-year variability in LAI and net radiation in cold and temperate climates, ultimately affecting the amount of absorbed radiation due to LAI-related effects on surface albedo. In addition, for tree biomes, the relationships between LAI and turbulent fluxes appear to contradict the experimental evidences. The dominance of the transpiration-driven over the observed albedo-driven effects might suggest that LSMs have the incorrect balance of these two processes. Such mismatches shed light on the limitations of our current understanding and process representation of the vegetation control on the surface energy balance and help to identify critical areas for model improvement.

10.
New Phytol ; 218(1): 15-28, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29488280

RESUMEN

Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die-off events have severe consequences for ecosystem services, biophysical and biogeochemical land-atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die-off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought-induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.


Asunto(s)
Sequías , Bosques , Árboles/fisiología , Predicción , Geografía , Modelos Teóricos , Probabilidad
11.
Glob Chang Biol ; 24(5): 2079-2092, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29105233

RESUMEN

Biotic disturbances (BDs, for example, insects, pathogens, and wildlife herbivory) substantially affect boreal and temperate forest ecosystems globally. However, accurate impact assessments comprising larger spatial scales are lacking to date although these are critically needed given the expected disturbance intensification under a warming climate. Hence, our quantitative knowledge on current and future BD impacts, for example, on forest carbon (C) cycling, is strongly limited. We extended a dynamic global vegetation model to simulate ecosystem response to prescribed tree mortality and defoliation due to multiple biotic agents across United States forests during the period 1997-2015, and quantified the BD-induced vegetation C loss, that is, C fluxes from live vegetation to dead organic matter pools. Annual disturbance fractions separated by BD type (tree mortality and defoliation) and agent (bark beetles, defoliator insects, other insects, pathogens, and other biotic agents) were calculated at 0.5° resolution from aerial-surveyed data and applied within the model. Simulated BD-induced C fluxes totaled 251.6 Mt C (annual mean: 13.2 Mt C year-1 , SD ±7.3 Mt C year-1 between years) across the study domain, to which tree mortality contributed 95% and defoliation 5%. Among BD agents, bark beetles caused most C fluxes (61%), and total insect-induced C fluxes were about five times larger compared to non-insect agents, for example, pathogens and wildlife. Our findings further demonstrate that BD-induced C cycle impacts (i) displayed high spatio-temporal variability, (ii) were dominated by different agents across BD types and regions, and (iii) were comparable in magnitude to fire-induced impacts. This study provides the first ecosystem model-based assessment of BD-induced impacts on forest C cycling at the continental scale and going beyond single agent-host systems, thus allowing for comparisons across regions, BD types, and agents. Ultimately, a perspective on the potential and limitations of a more process-based incorporation of multiple BDs in ecosystem models is offered.


Asunto(s)
Ciclo del Carbono , Bosques , Modelos Biológicos , Árboles/fisiología , Animales , Carbono/metabolismo , Clima , Cambio Climático , Estados Unidos
12.
Nat Clim Chang ; 7: 395-402, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28861124

RESUMEN

Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.

13.
Mov Ecol ; 4: 9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27087978

RESUMEN

BACKGROUND: Dispersal is a key process in the response of insect populations to rapidly changing environmental conditions. Variability among individuals, regarding the timing of dispersal initiation and travelled distance from source, is assumed to contribute to increased population success through risk spreading. However, experiments are often limited in studying complex dispersal interactions over space and time. By applying a local-scaled individual-based simulation model we studied dispersal and emerging infestation patterns in a host - bark beetle system (Picea abies - Ips typgraphus). More specifically, we (i) investigated the effect of individual variability in beetle physiology (flight capacity) and environmental heterogeneity (host susceptibility level) on population-level dispersal success, and (ii) elucidated patterns of spatial and/or temporal variability in individual dispersal success, host selectivity, and the resulting beetle density within colonized hosts in differently susceptible environments. RESULTS: Individual variability in flight capacity of bark beetles causes predominantly positive effects on population-level dispersal success, yet these effects are strongly environment-dependent: Variability is most beneficial in purely resistant habitats, while positive effects are less pronounced in purely susceptible habitats, and largely absent in habitats where host susceptibility is spatially scattered. Despite success rates being highest in purely susceptible habitats, scattered host susceptibility appeared most suitable for dispersing bark beetle populations as it ensures population spread without drastically reducing success rates. At the individual level, dispersal success generally decreases with distance to source and is lowest in early flight cohorts, while host selectivity increased and colonization density decreased with increasing distance across all environments. CONCLUSIONS: Our modelling approach is demonstrated to be a powerful tool for studying movement ecology in bark beetles. Dispersal variability largely contributes to risk spreading among individuals, and facilitates the response of populations to changing environmental conditions. Higher mortality risk suffered by a small part of the dispersing population (long-distance dispersers, pioneers) is likely paid off by reduced deferred costs resulting in fitness benefits for subsequent generations. Both, dispersal variability in space and time, and environmental heterogeneity are characterized as key features which require particular emphasis when investigating dispersal and infestation patterns in tree-killing bark beetles.

14.
J Appl Ecol ; 53(2): 530-540, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27041769

RESUMEN

1. Unprecedented bark beetle outbreaks have been observed for a variety of forest ecosystems recently, and damage is expected to further intensify as a consequence of climate change. In Central Europe, the response of ecosystem management to increasing infestation risk has hitherto focused largely on the stand level, while the contingency of outbreak dynamics on large-scale drivers remains poorly understood. 2. To investigate how factors beyond the local scale contribute to the infestation risk from Ips typographus (Col., Scol.), we analysed drivers across seven orders of magnitude in scale (from 103 to 1010 m2) over a 23-year period, focusing on the Bavarian Forest National Park. Time-discrete hazard modelling was used to account for local factors and temporal dependencies. Subsequently, beta regression was applied to determine the influence of regional and landscape factors, the latter characterized by means of graph theory. 3. We found that in addition to stand variables, large-scale drivers also strongly influenced bark beetle infestation risk. Outbreak waves were closely related to landscape-scale connectedness of both host and beetle populations as well as to regional bark beetle infestation levels. Furthermore, regional summer drought was identified as an important trigger for infestation pulses. Large-scale synchrony and connectivity are thus key drivers of the recently observed bark beetle outbreak in the area. 4.Synthesis and applications. Our multiscale analysis provides evidence that the risk for biotic disturbances is highly dependent on drivers beyond the control of traditional stand-scale management. This finding highlights the importance of fostering the ability to cope with and recover from disturbance. It furthermore suggests that a stronger consideration of landscape and regional processes is needed to address changing disturbance regimes in ecosystem management.

15.
Environ Monit Assess ; 186(1): 441-56, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24037227

RESUMEN

Biological infestations in forests, e.g. the insect outbreaks, have been shown as favoured by future climate change trends. In Europe, the European spruce bark beetle (Ips typographus L.) is one of the main agents causing substantial economic disturbances in forests. Therefore, studies on spatio-temporal characterization of the area affected by bark beetle are of major importance for rapid post-attack management. We aimed at spatially detecting damage classes by combining multidate remote sensing data and a non-parametric classification. As study site served a part of the Bavarian Forest National Park (Germany). For the analysis, we used 10 geometrically rectified scenes of Landsat and SPOT sensors in the period between 2001 and 2011. The main objective was to explore the potential of medium-resolution data for classifying the attacked areas. A further aim was to explore if the temporally adjacent infested areas are able to be separated. The random forest (RF) model was applied using the reference data drawn from high-resolution aerial imagery. The results indicate that the sufficiently large patches of visually identifiable damage classes can be accurately separated from non-attacked areas. In contrast to those, the other mortality classes (current year, current year 1 and current year 2 infested classes) were mostly classified with higher commission or omission errors as well as higher classification biases. The available medium-resolution satellite images, combined with properly acquired reference data, are concluded to be adequate tools to map area-based infestations at advanced stages. However, the quality of reference data, the size of infested patches and the spectral resolution of remotely sensed data are the decisive factors in case of smaller areas. Further attempts using auxiliary height information and spatially enhanced data may refine such an approach.


Asunto(s)
Escarabajos/fisiología , Monitoreo del Ambiente , Picea/parasitología , Enfermedades de las Plantas/parasitología , Animales , Cambio Climático , Alemania , Imágenes Satelitales , Nave Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...